


DUDLEY KNOX LIBRARY
NAVAL POSTGRADUA1
MONTEREY , CALIFORNIA r 3







NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
REGRESSION MODELS

OF QUARTERLY OVERHEAD COSTS

FOR SIX GOVERNMENT AEROSPACE CONTRACTORS

by

David J. Jerabek

March 1986

Thesis Advisor: D. C. Boger

Approved for public release; distribution is unlimited

T226353





iRlTY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION

CIASSIFIED

lb RESTRICTIVE MARKINGS

SECURITY CLASSIFICATION AUTHORITY

DECLASSIFICATION / DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution
is unlimited.

ERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NAME OF PERFORMING ORGANIZATION

val Postgraduate School

6b OFFICE SYMBOL
(If applicable)

Code 55

7a NAME OF MONITORING ORGANIZATION

Naval Postgrad u a

t

e School

ADDRESS (City. State, and ZIP Code)

nterey, California 93943-5000

7b. ADDRESS (City. State, and ZIP Code)

Monterey, California 93943-5000

>JAME OF FUNDING /SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ADDRESS (City. State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

[ITLE (Include Security Classification)

GRESSI0N MODELS OF QUARTERLY OVERHEAD COSTS FOR SIX GOVERNMENT AEROSPACE CONTRACTORS

ERSONAL AUTHOR(S)

rabek, David J

TYPE OF REPORT

ster's Thesis
13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year. Month, Day)

1986 March
15 PAGE COUNT

94

UPPLEMENTARY NOTATION

COSATI CODES

iFIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Regression, Fourth-Order Autocorrelation, Overhead Costs,

Quarterly Data

BSTRACT (Continue on reverse if necessary and identify by block number)

Since overhead costs constitute a large percentage of total cost for aerospace
itractors, it is important to be able to predict them accurately. The research
rformed in this thesis takes six government aerospace contractors and obtains

gression models of their overhead costs that can be utilized for forecasting purposes,
is method is preferable to some of the more commonly used methods because it estimates

srhead costs directly, eliminating reliance upon predicted overhead rates. After the

ta were transformed to eliminate the effects of autocorrelation, excellent structural

suits were obtained for five of the six aerospace contractors. A Monte Carlo simulation
s performed to compare various estimators of the autocorrelation. Two of the estimators
re found to be superior. These two estimators are both two-stage estimators that are

lculated utilizing Wallis's test statistic for fourth-order autocorrelation.

)|STRI3UTI0N/AVAILABILITY OF ABSTRACT
1 UNCLASSIFIED/UNLIMITED SAME AS RPT D DTlC USERS

21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
[NAME OF RESPONSIBLE INDIVIDUAL

n C. Boger
22b TELEPHONE (Include Area Code)

(408) 646-2607
22c OFFICE SYMBOL
Code 54Bk

ORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

1

SECURITY CLASSIFICATION OF THIS PAGE



Approved for public release; distribution is unlimited

Regression Models of Quarterly Overhead Costs
Tor Six Government Aerospace Contractors

by

David J. Jerabek
Lieutenant, United States Navy

B.A., United States Naval Academy, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
March 1986



ABSTRACT

Since overhead costs constitute a large percentage of

total cost for aerospace contractors, it is important to be

able to predict them accurately. The research performed in

this thesis takes six government aerospace contractors and

obtains regression models of their overhead costs that can

be utilized for forecasting purposes. This method is prefer-

able to some of the more commonly used methods because it

estimates overhead costs directly, eliminating reliance upon

predicted overhead rates. After the data were transformed

to eliminate the effects of autocorrelation, excellent

structural results were obtained for five of the six aero-

space contractors. A Monte Carlo simulation was performed

to compare various estimators of the autocorrelation. Two

of the estimators were found to be superior. These two esti-

mators are both two-stage estimators that are calculated

utilizing Wallis's test statistic for fourth-order

autocorrelation.
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I. INTRODUCTION

The purpose of this thesis is to analyze the overhead

costs of six government aerospace contractors, determine the

best estimators of autocorrelation found in the residuals,

and then obtain regression models for the overhead costs.

The most frequently used method to estimate overhead costs

is to use estimated overhead rates. These rates are

applied to estimated labor hours or costs in several func-

tional categories. Summing all of these category values

gives total overhead. This method results in poor

estimation in cases where the firm's output fluctuates

significantly as in the case of government aerospace

contractors. Consequently, it is unsatisfactory for use with

these six aerospace contractors. Another approach, the one

utilized in this thesis, is to estimate overhead costs

directly, and hence eliminate reliance upon overhead rates.

For aerospace contractors, overhead cost comprises 30 to

50 percent of total cost. Therefore, it is important to be

able to accurately predict these costs. It is also desir-

able that the predictive model be simple to utilize, without

sacrificing predictive power, since personnel of various

statistical backgrounds may be required to use it (Boger,

1983, pp. 5-7).

The work performed in this thesis is a continuation of

that presented in Boger (1984). The statistical methods and

procedures used herein to obtain the predictive models have

already been proven to give good, useful results. There are

additions in two areas to the data used by Boger. First,

data were obtained for two additional quarters and,

secondly, data were obtained for one additional contractor.

The major extension on Boger, and the emphasis of this

thesis, is in determining the best method to use to estimate

8



autocorrelation. The focus of the analysis performed herein

is to derive a simple and efficient regression model for

overhead cost.



II. DATA SOURCES AND CHARACTERISTICS

The data were obtained from six government aerospace

contractors. To maintain confidentiality, all references to

specific contractors will be with the labels A through F.

Prior to obtaining the data, a specific format for data

collection was selected to insure uniformity of data catego-

ries among the contractors. The overhead cost data were then

collected on a quarterly basis for the selected categories

from each of the contractors, starting with the first

quarter of 1979 through the fourth quarter of 1984. The

data for the last two quarters of 1984 were unavailable for

contractor E. The data for the last two quarters of 1984

for contractor B were eliminated from further analysis

because they were clearly outliers. In addition to the cost

data, data pertaining to production and operating character-

istics were obtained.

There are three major categories, two of which are made

up of several subcategories , which comprise total overhead

costs. The first major category, labor related-costs, has

subcategories of indirect salaries and fringe benefits. The

second major category, facilities costs, includes all

facilities-related costs. The last major category, the mixed

costs category, has three subcategories. These three subca-

tegories are Independent Research and Development and Bid

and Proposal (IR&D/B&P) costs, Electronic Data Processing

(EDP) costs, and a subcategory that contains all other costs

related to overhead.

The cost data were then converted from current dollars

to constant fourth quarter 1984 dollars. This conversion was

accomplished using Bureau of Labor Statistics (BLS) and

Gross National Product Deflator (GNPD) indices for the

appropriate categories. The labor-related costs were

10



converted using BLS SIC 372, the price index for production-

worker average hourly wages for the aircraft and parts,

industry. In this case the only indices available were

monthly indices. The monthly indices were then averaged to

obtain quarterly values. The facilities costs were adjusted

using the GNPD gross private domestic fixed nonresidential

investment index, published by the Bureau of Economic

Analysis. The mixed costs were adjusted using the GNPD

personal consumption services expenditure index. As with

all indices, those used here are imperfect. They were

selected because they should provide the best adjustments

for inflation among all readily available and relevant

indices

.

As previously mentioned, data in different production

and operational categories were also obtained. The only one

used in this analysis was the direct labor personnel

category. Due to the nature of this data, no adjustment was

necessary.

11



III. MODELING QUARTERLY OVERHEAD COST

A. PRESENCE OF AUTOCORRELATION

Whenever a statistical model is based upon time series

data, as is the case herein, the residuals can be expected

to exhibit some form of autocorrelation. Further, "the

shorter the periods of individual observations, the greater

the likelihood of encountering autoregressive disturbances"

(Kmenta, 1971, p. 270). Thus the presence of autocorrelation

is more likely with quarterly observations than when the

data are smoothed by reporting annual values. The most

common assumption about the form of the autocorrelation of

the errors terms is that the errors are first-order autore-

gressive (Judge et . al., 1985, p. 275). This model is called

an AR(1) process and possesses the form

et
=

Plet-1
+ u t, ^ 3 - 1 )

where et
is the error term from a regression model corre-

sponding to the observation at time t. The p-^ term is the

coefficient of correlation between the related error terms,

st
and et

of lag 1. The u+- are normally and independently

distributed random variables with mean and constant
2variance (J .

With autocorrelation the assumption that the error

terms, £,_ are independent identically distributed normal
u '

2random variables with mean and variance a is not true.

They are related to previous error terms and depend upon the

form of autocorrelation present. Secondly, when the auto-

correlation is AR(1), the variance of the error terms is

CTu
2/(1 " Pl

2)
(
Kmenta

*
1971

> P- 271).

When the error terms are autocorrelated the least

squares estimators of the regression coefficients are still

12



unbiased and consistent, but they are no longer efficient or

asymptotically efficient. The standard estimates of the

variances of the coefficients are also biased. When the

error terms are positively autocorrelated, as is most common

for economic time series data, this variance will be biased

downward (Kmenta, 1971, pp. 278-283). This will cause the

coefficient of determination, R-squared, and the t and

F-statistics to be exaggerated (Maddala, 1977, p. 283). The

upward bias in each of these statistics leads to an unwar-

ranted confidence in the regression model.

The adverse effect of an overestimated value of

R-squared is obvious since the higher the R-squared value,

the better fit the model is assumed to give. An upwardly

biased t-statistic makes it easier to reject, for any given

level of significance, the null hypothesis that the regres-

sion coefficient equals zero, thus, again giving the false

impression of a more significant regression model. The

effect of an exaggerated F-statistic is similar to that of

the t-statistic. It is easier to reject the standard

compound null hypothesis that all regression coefficients

equal zero for the F-test.

So, in addition to obtaining unbiased estimates of the

regression coefficients, it is equally important to obtain

unbiased estimates of their standard errors. Only then can

reliable statistics be obtained that can accurately assess

the quality of the regression model.

As the AR(1) model indicates, the error terms in one

period are related to those occurring one period prior. The

AR(1) process is common in yearly economic data. When the

data observations are quarterly, a special form of the

fourth-order autoregressive , SAR(4), process will be present

instead of the standard AR(4) process (Wallis, 1972, p. 618).

13



This special SAR(4) process has the form

et = p4St-4 + uf (3.2)

With this form of autocorrelation the error terms are

related to those occurring in the corresponding quarters of

successive years. Using the notation of Box and Jenkins

this is a seasonal model of order ( 1 , , )x(0 , , )^. The

period equals four since the data is quarterly and can be

expected to show seasonal effects within years (Box and

Jenkins, 1970, pp. 301-305). When this SAR(4) process is

present the variance of the error terms is cr /(l - P4 )

(Judge et. al., 1985, p. 298). This special SAR(4) process

should be distinguished from the general AR(4) process which

possesses the form

et
=

Plet-1
+

P2 et-2
+

P3 et-3
+

P4et-4
+ uf (3.3)

The SAR(4) process used in this analysis considers the

effect of the three previous quarters to be negligible

compared to that of the same quarter of the previous year

(Boger, 1983, p. 16).

Time series plots of the dependent variable (Figures

3.1a and 3.1b) total overhead costs, suggest that the Wallis

SAR(4) model is appropriate for this problem. As can be

seen, the data show a seasonal effect within years. The

data appear to follow a yearly cycle in which the quarterly

values of successive years fall in the same relative posi-

tion with respect to the remaining three quarters of their

respective years.

The time series plots of the independent variable

(Figures 3.2a and 3.2b), direct labor personnel, show that

they all appear to follow some type of cycle or general

trend. Contractors C, E, and F all appear to go through a

14
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single cycle. They start with an upward trend for approxi-

mately eight quarters, followed by a gradual decline for

about twelve quarters, and end with the start of another

upward swing. Contractor A appears to run through two

shorter cycles. Contractors B and D both appear to follow a

gradual, steady upward trend.

B. THEORETICAL MODEL UTILIZED

The general model utilized for overhead costs in this

analysis is of the form

Yt = Xtp
+

£t (3.4)

£t
=

Pi^t-i
+ u t, ( 3 - 5 )

where X
t

is a tx2 matrix and p is a 2x1 vector. Y
t

is the

dependent variable, total overhead costs. The columns of X
t

are the independent variable, direct labor personnel,

preceded by a column of l's for the constant term. Only one

independent variable is utilized because it satisfactorily

explains the dependent variable and minimizes the complexity

of the model. The error term has the structure shown in

equation (3.5) where i is 1 for an AR(1) process, or 4 for

Wallis's special SAR(4) process. The ut are normally and

independently distributed random variables with mean and

constant variance.

As previously mentioned, when autocorrelation is present

the estimators of the regression coefficients are not

efficient and their variances are biased. If p is a known

quantity, then the X and Y variables can be transformed to

eliminate the effect of the autocorrelation. A regression of

these new transformed variables, the Generalized Least

Squares (GLS) solution, yields results that correct these

deficiencies. However p is seldom, if ever, known. This

difficulty can be overcome by estimating p from the data.

19



This yields the Estimated GLS (EGLS) solution that also

possesses the desired properties (Kmenta, 1971, p. 284).

C. ESTIMATORS OF FOURTH- ORDER AUTOCORRELATION

One of the major thrusts of this analysis is to arrive

at the most efficient estimate of p^ . All of the estimators

considered fall into one of two categories, iterative or

maximum likelihood procedures. All but one of the iterative

estimators can be more specifically classified as two-stage

estimators. The theory behind maximum likelihood estimation

can be found in most intermediate level probability and

statistics texts. The basic approach to performing the

iterative, including the more specific two-stage, procedure

is presented in Kmenta (1971, p. 288). The first seven esti-

mators are two-stage estimators, while the eighth estimator

utilizes the full iterative procedure. The ninth estimator

is the maximum likelihood estimator.

Since the AR(1) process is the most frequently encoun-

tered form of autocorrelation, most of the estimators of pA

used herein are simply adaptations of their corresponding p^

estimator. Judge et . al. (1985) derives six estimators for

the AR(1) process case. Adaptations of the estimators of

Judge are given below.

The first estimator of pA. is the standard Prais-Winsten

estimator

T

t
?
5
e
t
et-4

P4 = -= • < 3 - 6 )

i. 9

til
e
t

where e
t
= Y

t
-X

t j3, the residual from the OLS regression in

equation (3.4). This estimator is simply the sample

correlation coefficient when the residuals possess the auto-

correlation process shown in equation (3.5) for i=4. The

20



AR(1) process version of this estimator is known to give a

downwardly biased estimate of p-^ (Park and Mitchell, 1980,

p. 189). So we could expect this same result when using

equation (3.6) to estimate p^

.

The second estimator of p^ is

( T -K
)J5

e t et-4

P4 =
£

• < 3 - 7 >

where T is the number of observations and K the number of

parameters that must be estimated, in this case 2. This is

simply a modification to equation (3.6) derived by Theil to

incorporate a degrees-of -freedom correction. As can be seen

it will further increase the downward bias of equation

(3.6).

The third estimator of p^ is

fa = 1 - -5d4 , (3.8)

where d^ is the Wallis test statistic for the special SAR(4)

process. As presented in Wallis (1972) the equation for dA

is

t
?
5

( e t " e t-4)
d4 = — . (3.9)

1 ?

t=l E

So equation (3.8) is easily computed once the test

statistic, d^ has been calculated.

21



The fourth estimator of p4 is

T2 (l - .5d/J t K2
^s

P4 ' JZ—^5 • ( 3 - 1Q )

This estimator is a modification to equation (3.8) derived

by Theil and Nagar. It is an improvement over equation (3.8)

if the explanatory variables are smooth, "in particular, if

the first and second differences of each explanatory vari-

able are small in absolute value compared to the range of

the variable itself" (Intriligator , 1978, p. 164).

The fifth estimator of p4 is the Durbin estimator. It is

the coefficient of Y
t _ 4 obtained in a regression of Y

t
on

Y
t _ 4 , a constant, X

t , and X
t _ 4 :

Y
t

= p4Yt _ 4 p 1 (l-p4 ) p 2Xt
- P 2 p4Xt _ 4 £t , (3.11)

t = 5,6,... ,T.

The sixth estimator of p4 is obtained from an OLS

regression of e
t

on e
t _ 4 :

e
t

=
p4 e t _ 4 + ut , t = 5,6,..., T. (3.12)

The seventh estimator of p4 is an adaptation of the Park

and Mitchell (1980) estimator:

t
?
5
e
t
et-4

?,= -^71— * (3 ' 13)

As can be seen this is a modification of equation (3.6)

where the summation in the denominator excludes the first

four and the last observation. This will reduce the downward

bias associated with equation (3.6).

22



The eighth . estimator of p^ is the iterative

Prais-Winsten estimator utilizing equation 3.13. This is the

same as estimator seven except that the iterative procedure

is carried out until convergence is achieved. For this

estimator, as well as the maximum likelihood estimator that

follows, convergence was defined to be consecutive estimates

within | .00001] of each other. Each procedure was defined to

be nonconvergent if convergence had not occured within

fifty-two iterations (Park and Mitchell, 1979, pp. 2-6).

The maximum likelihood estimator, the ninth estimator

of P4 > was obtained using the iterative algorithm derived by

Beach and MacKinnon (1978). The specific procedure they

derived was for the AR(1) process, so again minor adjust-

ments had to be made to tailor it to the SAR(4) process. The

only alterations necessary were in the calculation of the

coefficients of the polynomial

f(p) =
p
3 + Ap2 + Bp + C = 0. (3.14)

The coefficients are now computed as follows:

T
A = -(T-2)I e

t
e
t _ 4 / DENOM (3.15)

B =
4 2 T 2 T 2[(T-l)I e

t
* - He t./ - S e t

z
] / DENOM (3.16)

t=l u t=5 L ^ t=5 L

T
C = T| e

t
e
t _ 4 / DENOM, (3.17)

where the common denominator is

T 2 * 2DENOM = (T-1)£S e
t _ 4

* • 2<*t )

'

(3.18)
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The remainder of the algorithm is the same as that presented

in Beach and MacKinnon (1978). Beach and MacKinnon adver-

tise that this algorithm should converge in four to seven

iterations for five digit accuracy.

D. TRANSFORMATION FOR AUTOCORRELATION

If first or fourth-order autocorrelation is shown to

exist in the residuals, then the data must be transformed to

eliminate its presence. The transformation used for an

AR(1) process is discussed in Judge et.al. (1985, p. 285).

It should be noted here that only one estimator for pi was

used, the two stage Prais-Winsten estimator derived in Park

and Mitchell (1980)

This is the AR(1) process version of equation (3.13). This

particular estimator was selected because it was found to

perform better than any other commonly used alternative,

including the more standard Prais-Winsten estimator (see

Judge et. al., 1985, p. 286), in Park and Mitchell's 1980

analysis

.

For the SAR(4) process the transformation is

Z
t
* = Z

t
(l-p4

2
)
1 / 2

, t = 1,2,3,4 and (3.20)

Zt
* = Zt

-
p4 Z t _ 4 , t=5,6,...,T, (3.21)

where p4 must be estimated using any of its known estima-

tors. Some estimators, of course, are more efficient than

others. This is one item to be resolved for the specific

models used herein.
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Note that both of these transformations utilize all T

observations. An alternative approach is to omit a number

of the initial observations in the transformation (see

Cochrane and Orcutt, 1949, p. 35). The number of omissions is

dependent upon the type of autocorrelation found present in

the data. The first observation is omitted when the data are

being transformed to eliminate the presence of an AR(1)

process. The transformation for an SAR(4) process would

result in the omission of the first four observations.

It has been shown that the use of all T observations

generally results in much more efficient results (Spitzer,

1979, and Park and Mitchell, 1980). It should be noted that

these results were arrived at by studying the AR(1) process

transformation where only the first observation is involved.

The effects should be even more dramatic for the SAR(4)

process transformation, since the first four observations

are involved. It is also worth noting that the relative

efficiency of these two alternative transformations is

related to the specification of the independent variable

(Maeshiro, 1979 and Taylor, 1981). Maeshiro found that in

the case where the independent variable is trended and p=0

(as is most commonly the case with economic data) the reten-

tion of all T observations greatly increased the efficiency

of the estimator. He also found that retention of the

initial observations was not as critical for the case of an

untrended independent variable.

E. PROCEDURE

The general procedure followed herein was to first

perform an Ordinary Least Squares (OLS) regression with

direct labor personnel as the independent variable and total

overhead cost as the dependent variable. Direct labor

personnel was selected as the independent variable because

it was shown to perform the best among numerous explanatory

variables in a single variable regression with total
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overhead cost in Boger's 1983 analysis. The residuals were

then analyzed and tested for the presence of Wallis's

special SAR(4) process, the AR(1) process, or a combination

of both. To do this, the autocorrelation function of the

residuals was first looked at to get an overall picture of

the type of autocorrelation present. More formal testing

was then performed.

The Durbin-Watson test was used to check for the pres-

ence of the AR(1) process (see Kmenta, 1971, pp. 295-296).

The Wallis test, a generalization of the Durbin-Watson test,

was utilized to check for the presence of the SAR(4) process

(see Wallis, 1972, pp. 624-625). In both cases a two-sided

test was performed using the null hypothesis Hq : p=0, versus

the alternative H-^: p^O. A significance level of size a= • 10

was used to define the critical region.

One problem with both of these tests is the inconclusive

region between the upper and lower significance points that

determines the critical region. The size of this inconclu-

sive region increases as the sample size decreases or as the

number of regressors increases (Wallis, 1972, p. 625). So in

this analysis we are handicapped by the small sample size,

but it is to our advantage here in keeping the number of

regressors to a minimum. Maddala (1977, pp. 285-286) presents

numerous suggestions, derived by others, in dealing with

this inconclusive region for the Durbin-Watson test. In this

analysis we chose the statistically conservative approach of

ignoring the lower significance point and using only the

upper point to define the critical region. This rule was

followed for both the Durbin-Watson and Wallis tests. This

method is said to perform well in many situations for the

Durbin-Watson test (Draper and Smith, 1981, p. 167). As

presented in Draper and Smith (1981) the rejection criteria

for the two sided test for this rule are as follows; if d<du
or 4-d<du , reject Hq at level 2a- Any point that would have
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fallen in the inconclusive region before, would now fall in

the critical region and lead to the rejection of our null

hypothesis. This treatment of the inconclusive region is

also recommended by Hannan and Terrel (1968). They feel that

the upper significance point is a good approximation for the

bound on the critical region when the regressors are slowly

changing. They further state that economic time series, as

is the case here, are slowly changing so the upper signifi-

cance point can be used as the lone significance point for

the Durbin-Watson test (Maddala, 1977, p. 285). In another

study, Theil and Nagar (1961) computed significance points

for the Von Neumann ratio of least-squares estimated regres-

sion disturbances, which is equivalent to the Durbin-Watson

test statistic. Their calculated significance points were

very close to the upper significance points for the

Durbin-Watson test. So this also gives added credence to

using the upper point as the sole significance point in

performing these tests. Though all of the referenced

results apply to the Durbin-Watson test, this rule was used

on the Wallis test also because, as previously mentioned,

the Wallis is a slight modification of the Durbin-Watson

test

.

Next, depending upon the form of autocorrelation found

present, the data were transformed using the appropriate

transformation. The EGLS solution was then obtained by

reestimating the model using the transformed dependent and

independent variables. Again the residuals of this regres-

sion were tested for the presence of autocorrelation. This

cycle of reestimating the model and testing for autocorrela-

tion was performed until a model was obtained where the

residuals were free from any autoregressive process. Once

this final model was obtained, the residuals were checked to

insure that they were independent, identically distributed,

Normal random variables with zero mean and constant
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variance. In all cases this requirement was met. So the

final models met all of the necessary assumptions required

of a correct, reliable regression model.
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IV. SMALL- SAMPLE PROPERTIES OF SEVERAL ESTIMATORS OF SAR(4)

A. GENERAL

As previously mentioned, one of the purposes of this

thesis is to determine the best estimators of fourth-order

autocorrelation. This is important because the performance

of the EGLS regression is dependent upon the quality of the

estimator (Rao and Griliches, 1969, p. 258). In order to

evaluate the nine estimators presented in Chapter 3, a Monte

Carlo simulation was carried out to determine their relative

performances. This chapter explains the simulation and

presents the results. The three estimators that performed

the best in this simulation were then used to obtain struc-

tural models for each contractor. These three models then

provided another basis of comparison for the three final

estimators. The computer programs utilized in the simula-

tion are contained in the appendix.

B. RESULTS FROM PREVIOUS MONTE CARLO ANALYSIS

No previous simulations comparing estimators of fourth-

order autocorrelation could be found. Therefore the results

of this simulation could only be compared with results

obtained from previous simulations that evaluated various

estimators of first-order autocorrelation. Even though

these past Monte Carlo simulations dealt with the AR(1),

instead of SAR(4), process estimators, their results should

still be useful in predicting the relative performance of

the various estimators of p a . Of the nine estimators evalu-

ated in this thesis, results comparing the AR(1) process

versions of only estimators one, five, seven, eight and nine

could be found. As will be shown later in this chapter,

estimators three and four proved to be the best of the nine

estimators tested herein. It would have been interesting to
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see how their first-order autocorrelation versions would

have compared in these previous studies.

The Spitzer and Rao and Griliches studies compared the

Durbin and standard Prais-Winsten estimators of first-order

autocorrelation for Mean Squared Error (MSE) of (Bo* ^n both

analyses the Prais-Winsten estimator performed better for

lower positive values (pi<«5) while the Durbin estimator

dominated for the higher values. The Spitzer study also

included the maximum likelihood estimator and showed that it

was better than both the Durbin and Prais-Winsten estimators

for pi>-6 for MSE of p£ > anc* better than the Durbin esti-

mator for p^-3 for MSE of p-i (it wasn't compared to the

Prais-Winsten estimator for MSE of p]_)- Park and Mitchell

compared four estimators in their 1980 analysis for RMSE of

J3-L
and 02* The estimators they analyzed were the iterative

Prais-Winsten, the maximum likelihood, their version of the

Prais-Winsten (Equation (3.19)), and the standard

Prais-Winsten estimators. Their maximum likelihood estimator

was computed utilizing Beach and MacKinnon's algorithm. The

iterative Prais-Winsten estimator was the best of the four

with a slight edge over the maximum likelihood estimator.

Since the iterative Prais-Winsten estimator outperformed its

two-stage counterparts it was shown that iteration leads to

a more efficient estimator. Of the two stage estimators,

their version of the Prais-Winsten estimator was better than

the standard version. Park and Mitchell's 1979 study showed

that the iterative Prais-Winsten was also better than the

maximum likelihood estimator for MSE of p-^. All of these

studies showed that all of the estimators outperformed the

OLS solution when a significant amount of autocorrelation

was present in the residuals (p^>.2).
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C. THE MODEL

The model utilized in the simulation was

Y
t

=
Pi

+
02Xt

+ Bt ( 4 -D

Et = P4Et-4 + uf (4 ' 2)

where et
~N(0 ,cju

2
/ ( l-p4

2
) ) , ut

~ N(0 ,<j
2

) , t = 1,2, ...,T, and

|oa|<1.0. Three different independent variables were

utilized in the simulation. They were the direct labor

personnel for contractors A, B, and E. These were selected

because they were three of the models where the SAR(4)

process was found to be the most significant form of auto-

correlation present in the residuals. A separate simulation

run was performed for each of these so that the relative

performance of the estimators could be compared for indepen-

dent variables with different structures. The value of <r

was particular to the contractor for which the simulation

run was performed.

It was desired that the generated dependent variable,

Y
t , be comparable in value and structure to the total

overhead cost for the respective contractor (the dependent

variable, Y
t , in equation (3.4)). Therefore the uj- terms of

equation (4.2) had to be proportional to the u t terms of

equation (3.5). To accomplish this, the value of q was the

variance of the residuals, u^- » obtained from the OLS regres-

sion of e
fc

on e
t _^:

e
t

=
P4et-4

+ »f (4 ' 3)

The variables e
t

and e
t _^ were the (unlagged and lagged)

residuals obtained from the OLS regression in equation

(3.4). The sample size, T, was simply the number of data

observations for each contractor, twenty-four for contractor

A and twenty- two for contractors B and E. Each simulation

was replicated one hundred times.
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D. DATA GENERATION

For each simulation the independent variable, X
t , the

regression coefficients, j3i and j3o > anc^ P4 were predeter-

mined, fixed values. As previously mentioned the three

different independent variables were the direct labor

personnel for contractors A, B, and E. Each simulation was

run for values of p^ of .1, .2, .3, .4, .5, .6, .7, .8, .9

and .95. The value of p^ was restricted to positive values

because this is the region most likely to be encountered for

the SAR(4) process with economic data. As in the simulation

performed by Rao and Griliches in 1969, the constant term,

P^, was set at zero. The value of the slope, J3o> was then

set at a value that generated dependent variables, Yt ,

proportional in size to the respective contractor's total

overhead cost. The value of p£ f° r each simulation, is

contained in Table 1.

TABLE 1

SIMULATION PARAMETERS

Simulation run po CTU

Contractor A 17
Contractor B 17
Contractor E 14

13454
8835
3444

With the ultimate goal of determining Y
t , the data were

generated using the following algorithm:

(1) Thirty-two u t values were randomly generated from a

normal distribution with mean and variance a . The value

of the standard deviation, a , for each simulation, is shown

in Table 1. New u t values were drawn for each of the 100

replications

.
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(2) The first four values of et
were computed to be

et = u t / U-p4 2
)
1/2

>
t = 1.2.3,4. (4 .4)

This generated error terms from the normal distribution with

mean and variance (j /(l-p4 ).

(3) The next twenty-eight (twenty- four for contractors B and

E) values of et
were generated from

£t
=

P4et-4
+ u t> t = 5,6,. ..,T. (4.5)

A total of T + 8 values of et
were generated. The first

eight of these values were dropped so that the first four

values, generated by step (2), didn't excessively influence

the sample (Spitzer, 1979, p. 46). This left us with T

values of et
that possess the SAR(4) process shown in

equation (4.2).

(4) Using
J3;l

= 0, the respective 02 > ^t '
anc* t *ie et generated

A
above, the dependent variable Y

t , was generated as follows

% =
Pi

+
P2Xt

+ «f ( 4 - 6 )

An OLS regression was then performed with direct labor

personnel as the independent variable and Y
t

the dependent

variable. The residuals from this regression were then used

to compute the nine estimators of pA. As in Park and

Mitchell's 1979 analysis any estimator that equaled or

exceeded 1.0 was reset to .99999. For the two iterative

algorithms, the iterative Prais-Winsten and the maximum

likelihood, if two consecutives estimates exceeded 1.0 they

were both reset to .99999 and convergence was declared. The

results for these two estimators are only for the cases when

convergence was attained.
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E. MEASURES OF EFFECTIVENESS

Three MOEs were used to determine the relative perform-

ances of the estimators, the RMSE of p4 , the RMSE of the

slope coefficient, (3o > an<^ tne adjusted R-squared value.

Each MOE was computed and averaged over the one hundred

replications for each value of p a .

To evaluate how accurately each estimator predicted pA

and its variance the RMSE of p4 was computed (Rao and

Griliches, 1969). The equation is

RMSE (p4 ) =
[|

1
(^4 -p4 )

2 /100] 1 / 2
. (4.7)

The RMSE of
(32 evaluated the estimators in terms of

their performance for the slope coefficient, p 2
To make

comparisons easier, the performance of each estimator (EGLS

solution) relative to that of the OLS solution was computed.

As presented in Park and Mitchell (1980) the relative effi-

ciency is

RMSE (Ro, OLS)
Rel. Eff. (p 2 , estimator^ =

FZ (4.8)y *- ^ RMSE (p 2 > EGLS
i )

where

RMSE
(J32 ) = tl^2"P2)

2
/ 100] 1 / 2

. (4.9)

The last MOE utilized was the adjusted R-squared value

from each EGLS regression. Though three MOE ' s were

utilized, the RMSE of p4 was considered the most important.

The other two were considered only if the RMSE of p4 was

sufficiently close for alternative estimators.
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F. RESULTS

1

.

General

The results for the three simulations are summarized

in Tables 2 through 4 and Figures 4.1a through 4.3c. The

three different simulation runs are identified by the

contractor label. Since each simulation was run with a

different independent variable, each having its own unique

structure, the results vary slightly between simulations.

The two iterative procedures had slight convergence

problems at low values of p^ (p4<-3). This could possibly

have occured because at low values of p^ the error terms,

et , still do not have a significant SAR(4) process struc-

ture. So the first estimate could be a poor one and the

iterative procedure could proceed in the wrong direction

(most likely toward negative values of p4). The convergence

problem decreased as p^ increased, such that by P4=.7
convergence occured almost 100 percent of the time. For both

estimators convergence generally occured in four to six

iterations

.

2

.

Estimation of Rho

The RMSE of P4 was used to determine which estima-

tors provided the best estimate of P4 . As can be seen in

Table 2 and Figures 4.1a through 4.1c, no estimator was

uniformly the best. Estimators three and four, the two

estimators that utilized the Wallis test statistic,

appeared to be vastly superior over the entire range of P4

.

They were only outperformed at the extreme low end by

estimators one and two, the two versions of the sample auto-

correlation coefficient. Estimator three was the best in the

range -2<p4<.5. A crossover occured at P4 equals .6 and

estimator four dominated for the upper range of P4 . An

exception to this was for the contractor A simulation where

estimator nine was the best for p4=.95. Estimator nine, the

maximum likehood estimator, appeared to be the third most

35



TABLE 2

RMSE OF RHO FOR THE THREE SIMULATION RUNS

Contractor A
Estimator

P4 1 2 3 4 5 6 7 8 9

.1 .198 .191 .195 .2 .218 .226 .244 .193 .224

.2 .183 .18 .17 .175 .214 .2 .22 .2 .217

.3 .204 .203 .171 .175 .209 .209 .227 .213 .226

.4 .209 .212 .154 .157 .198 .207 .209 .198 .214

.5 .233 .24 .153 .154 .199 .214 .218 .209 .21

.6 .286 .295 .184 .181 .235 .259 .253 .228 .213

.7 .33 .342 .207 .203 .26 .288 .284 .254 .236

.8 .286 .302 .162 .16 .217 .235 .217 .193 .167

.9 .283 .305 .134 .129 .195 .213 .184 .163 .126

.95 .243 .27 .097 .092 .133 .149 .134 .112 .070

Contractor B
Estimator

P4 1 2 3 4 5 6 7 8 9

.1 .212 .204 .215 .22 .242 .248 .256 .216 .242

.2 .224 .219 .204 .208 .249 .255 .257 .201 .229

.3 .241 .239 .184 .188 .257 .256 .26 .206 .217

.4 .285 .284 .216 .217 .271 .286 .305 .249 .244

.5 .278 .283 .193 .193 .265 .283 .278 .24 .246

.6 .264 .274 .164 .164 .213 .228 .234 .225 .217

.7 .324 .337 .196 .192 .252 .275 .287 .26 .233

.8 .302 .319 .172 .169 .222 .245 .236 .207 .18

.9 .29 .314 .141 .137 .203 .216 .192 .176 .15

.95 .254 .283 .105 .101 .144 .153 .148 .131 .106

Contractor E
Estimator

P4 1 2 3 4 5 6 7 8 9

.1 .21 .202 .228 .234 .265 .252 .263 .236 .264

.2 .213 .208 .213 .219 .263 .245 .253 .224 .253

.3 .23 .228 .185 .191 .253 .244 .258 .226 .24

.4 .271 .272 .204 .207 .286 .275 .292 .261 .268

. 5 .26 .265 .174 .176 .269 .261 .262 .229 .237

.6 .252 .263 .154 .156 .212 .214 .22 .215 .216

.7 .314 .327 .174 .171 .254 .261 .27 .256 .23

.8 .302 .32 .159 .156 .228 .246 .229 .205 .179

.9 .286 .311 .125 .12 .196 .206 .169 .152 .12

.95 .259 .288 .105 .101 .15 .156 .148 .13 .106
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efficient, with the iterative Prais-Winsten estimator a

close fourth. It was interesting to compare the performance

of the standard Prais-Winsten estimator, estimator one, with

that of Park and Mitchell's version, estimator seven.

Estimator one was better in the lower range (pA<.5) with

estimator seven better from that point on. Overall though,

it appeared that estimator seven was the better of the two.

It could also be observed that all estimators except one and

two improved as p^ increase. Estimators one and two

performed better at the lower end (p^=.l). Recall that

these two estimators are known to be downwardly biased in

their AR(1) process forms.

3

.

Estimation of Slope Coefficient

Most noteworthy was the fact that all estimators

provided more efficient estimation than did the OLS solution

for p4>.2. As can be seen in Table 3 and Figures 4.2a

through 4.2c, none of the estimators dominated over any

significant range of p a . The two best performers appeared

to be estimators eight and nine. These two estimators poss-

essed a slight edge over estimators three and four. The

performances of the remaining estimators, except for estima-

tors one and two which were clearly inferior, were very

comparable and no significant distinctions could be drawn.

4

.

EGLS Regression Quality

The adjusted R-squared value was selected as the MOE

to evaluate the quality of the EGLS regression. Again, as is

shown in Table 4, all estimators provided better results

than did the OLS solution. As can also be seen in Figures

4.3a through 4.3c estimators three and four were again

vastly superior. This time estimator four performed the best

until it was surpassed by estimator three at approximately

p^ equal .8. Estimator nine again appeared to be the third

best performer. Except for estimators one and two, which

were again slightly inferior, the remaining estimators were
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TABLE 3

RELATIVE EFFICIENCIES FOR THE THREE .SIMULATION RUNS

Contract or A
Estimat or

P4 1 2 3 4 5 6 7 8 9

.1 1.05 1.05 1.02 1.02 1.06 1.07 1.08 1.02 1.02

.2 1.07 1.07 1.02 1.02 1.04 1.08 1.07 1.08 1.07

.3 1.05 1.04 1.08 1.08 1.06 1.05 1.05 1.03 1.01

.4 1.1 1.09 1.08 1.08 1.11 1.11 1.1 1.09 1.08

.5 1.14 1.13 1.21 1.21 1.17 1.18 1.18 1.19 1.22

.6 1.25 1.24 1.33 1.33 1.33 1.28 1.29 1.35 1.35

.7 1.19 1.18 1.21 1.21 1.19 1.2 1.19 1.2 1.19

.8 1.31 1.3 1.37 1.37 1.37 1.34 1.36 1.38 1.38

.9 1.56 1.54 1.69 1.7 1.71 1.66 1.67 1.71 1.74

.95 1.38 1.37 1.41 1.41 1.41 1.4 1.41 1.42 1.43

Contractor B
Estimator

P4 1 2 3 4 5 6 7 8 9

.1 0.93 0.93 0.97 0.97 0.96 0.95 0.98 0.98 0.97

.2 0.94 0.94 0.95 0.96 0.96 0.99 0.97 1.07 1.08

.3 1.03 1.03 1.01 1.01 1.03 1.04 1.04 1.05 1.04
,i+ 1.05 1.05 1 1 1.01 1.04 1.03 1.02 1.01
. 5 1.02 1.02 1.04 1.04 1.04 1.02 1.02 1.06 1.05
.6 1 .06 1.06 1.08 1.08 1.06 1.07 1.08 1.07 1.08
.7 1.03 1.03 1.06 1.06 1.06 1.04 1.03 1.08 1.09
.8 1.05 1.05 1.04 1.03 1.04 1.05 1.03 1.02 1.03
.9 1.12 1.12 1.14 1.14 1.15 1.15 1.12 1.13 1.14
.95 1.16 1.15 1.18 1.18 1.17 1.17 1.18 1.18 1.18

Contractor E
Estimator

P4 1 2 3 4 5 6 7 8 9

.1 1.02 1.02 0.99 0.98 1.02 1.02 1.01 1.09 1.08

.2 1.06 1.06 1.01 1.01 1.06 1.07 1.07 1.04 1.04

.3 1 1 1 1 1.02 1.01 0.99 1.1 1.11

.4 1.03 1.02 1.08 1.08 1.07 1.04 1.04 1.06 1.07

.5 1.06 1.06 1.15 1.15 1.11 1.07 1.07 1.11 1.12

.6 1.13 1.13 1.15 1.16 1.15 1.14 1.14 1.15 1.15

.7 1.12 1.11 1.18 1.18 1.15 1.14 1.15 1.16 1.17

.8 1.1 1.1 1.12 1.12 1.12 1.1 1.1 1.09 1.09

.9 1.27 1.27 1.27 1.27 1.27 1.27 1.28 1.28 1.27

.95 1.37 1.37 1.36 1.36 1.36 1.36 1.36 1.36 1.36

41



Figure 4.2a Relative Efficiencies

for Simulation for Contractor A.

42



o

to
UJ<NlO^-vO<Or^030i

in
en

_ <?>

CO

« r^

<£>

in

m

CM

srt Oil SO* l 00 I

A0N3I0UJ1 3All\T13a

560

Figure 4.2b Relative Efficiencies

for Simulation for Contractor B.
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TABLE 4

ADJUSTED R- SQUARED FOR THE THREE SIMULATION RUNS

Contractor A
Estimator

4 1 2 3 4 5 6 7 8 9

1 .41 .397 .509 .514 .443 .421 .422 .451 .473
2 .433 .426 .596 .605 .519 .46 .466 .505 .53
3 .521 .512 .669 .677 .59 .556 .569 .593 .615
4 .604 .594 .745 .751 .701 .651 .655 .691 .721
5 .644 .633 .764 .769 .716 .689 .702 .717 .741
6 .667 .654 .771 .775 .741 .709 .721 .742 .768
7 .705 .693 .795 .797 .758 .739 .744 .763 .777
8 .765 .755 .805 .802 .762 .764 .767 .755 .769
9 .768 .757 .779 .766 .703 .719 .7 .68 .697
95 .751 .737 .722 .685 .656 .687 .592 . 581 .6

Contractor B
Estimator

4 1 2 3 4 5 6 7 8 9

1 .574 .569 .611 .617 .609 .589 .594 .599 .62
2 .563 .559 .693 .699 .609 .582 .588 .599 .62
3 .624 .614 .755 .762 .705 .666 .68 .711 .74
4 .658 .648 .816 .822 .742 .71 .71 .731 .766
5 .717 .706 .847 .853 .772 .745 .761 .788 .808
6 .804 .793 .891 .894 .849 .847 .855 .86 .876
7 .819 .808 .901 .902 .864 .848 .821 .83 .875
8 .865 .855 .908 .905 .843 .866 .847 .837 .881
9 .882 .873 .885 .865 .762 .818 .703 .677 .798
95 .873 .863 .838 .756 .666 .709 .572 .523 .683

Contractor E
Estimator

4 1 2 3 4 5 6 7 8 9

1 .648 .645 .691 .695 .662 .657 .666 .667 .676
2 .658 .655 .735 .74 .682 .675 .68 .683 .699
3 .671 .665 .75 .754 .694 .69 .707 .718 .731
4 .692 .686 .792 .796 .73 .729 .733 .74 .764
5 .725 .717 .822 .825 .766 .759 .771 .78 .806
6 .76 .75 .841 .844 .81 .8 .813 .817 .835
7 .77 .76 .845 .847 .814 .806 .805 .809 .83
8 .801 .789 .854 .854 .827 .828 .833 .832 .842
9 .801 .786 .842 .837 .809 .819 .804 .795 .814
95 .789 .772 .822 .81 .796 .803 .784 .779 .786
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for Simulation for Contractor A.
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all relatively comparable in their overall performance.

Estimators one and two were the best at the extreme high end

(pA--95) in two of the simulations however. In comparing the

two Prais-Winsten estimators, estimator seven performed

better for p4<-7, with estimator one better for p4
> -7.

Again estimator seven appeared to be the better of the two

estimators

.

5 . Summary

All of these estimators provided an improvement over

the OLS solution when the SAR(4) process was present in a

significant amount (pA>.2). This mirrors the results of the

previous Monte Carlo analyses for the AR(1) process cited

earlier in the chapter. This simulation indicated that

estimators three and four were the best estimators of p^

.

Different results may be obtained for differently structured

independent variables. The performances of estimators three

and four were nearly identical. The selection of one over

the other may be based upon the smoothness of the explana-

tory variable or the approximate value or range of p^ , if

known. It was expected beforehand that the maximum likeli-

hood and iterative Prais-Winsten estimators, the two most

time costly estimators, would have outperformed all of the

other estimators. They did in fact finish third and fourth,

with estimator nine proving to be slightly better than esti-

mator eight. It is worth noting again that none of the

previous AR(1) process studies compared the AR(1) process

versions of estimators three and four. Therefore it was

believed that, like all of the other two-stage estimators,

they would have been outperformed by the maximum likelihood

and iterative Prais-Winsten estimators, as was shown to be

the case in the previous studies. The result that estimator

nine was better than estimator eight was the opposite of

that obtained in the previous AR(1) process studies, but in

both cases their performances were very close. As in the

49



previous studies it was proven that iteration leads to a

more efficient estimator, as the iterative Prais-Winsten

estimator was again shown to be better than its two-stage

counterparts. Of the two Prais-Winsten estimators, esti-

mator seven (Park and Mitchell's version) appeared to be

better overall. This agreed with Park and Mitchell's find-

ings in their analysis of first-order autocorrelation esti-

mators. Knowledge of the approximate range of p^ beforehand

would help in selecting the more appropriate of these two

estimators. In the lower region estimator one was better,

while estimator seven dominated in the upper region. The

next chapter presents and compares the final regression

models obtained for the three estimators, numbers three,

four, and nine.
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V. STRUCTURAL ANALYSIS

A. GENERAL

In this chapter the procedures outlined in chapter three

were followed to obtain EGLS regression models for each

contractor. A separate model was obtained using each of the

three preferred estimators from the previous chapter, esti-

mators three, four, and nine. All of the models are

presented for comparison. Due to the large number of models

obtained the entire procedure is illustrated in detail for

only one, contractor A's EGLS model for estimator three.

Only the final results of the other models are presented.

In all cases direct labor personnel was utilized as the

explanatory variable and total overhead costs as the

dependent variable. The computer programs utilized in the

structural analysis are contained in the appendix.

B

.

PROCEDURE

Table 5 presents the results of these procedures applied

to the regression of total overhead costs for contractor A

(TOTOHA) on direct labor personnel for contractor A

(DIRPERA) . The results of this initial regression indicated

very poor results. The adjusted R-squared value was very

low and the F-statistic (not including constant term) was

very close to its five percent critical value of 4.32 even

though both were inflated due to the presence of autocorre-

lation. The low R-squared value indicated that the

regression equation explained little beyond the mean of the

dependent variable (Boger, 1983, p. 21). Though biased

downward, also due to the presence of autocorrelation, the

standard errors of the regression coefficients were still

large relative to the magnitude of the coefficients.
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TABLE 5

RESULTS FOR CONTRACTOR A

Model: TOTOHA = a + bDIRPERA

Untransf orme.d Data

Standard Error of the Regression: 15000.
Adjusted R-squared:
F-statistic (degrees of freedom):

.1504
5.072 (1,22)

Estimate of a: 76270.
Standard Error: 63930.

Estimate of b: 12.06
Standard Error: 5.355

Durbin-Watson Test Statistic: 1.688
Wallis Test Statistic: .5480
Estimator Three: .7260
Estimator Four: .7381
Estimator Nine: .7843

Transformed Data

Estimator Three

Standard Error of Regression: 9503.
Adjusted R-squared: .8660
F- statistic: 149.7
Estimate of a: 69090.

Standard Error: 33980.
Estimate of b: 12.18

Standard Error: 2.787

Estimator Four

Standard Error of Regression: 9468.
Adjusted R-squared: .8649
F-statistic: 148.3
Estimate of a: 68650.

Standard Error: 33740.
Estimate of b: 12.20

Standard Error: 2.760

Estimator Nine

Standard Error of Regression: 9361.
Adjusted R-squared: .8571
F-statistic: 138.9
Estimate of a: 67224.

Standard Error: 33230.
Estimate of b: 12.26

Standard Error: 2.687
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The autocorrelation function of the residuals obtained

from this regression (Figure 5.1), with its single signifi-

cant spike at lag four, strongly suggested the presence of

Wallis's SAR(4) process. Upon formally testing the residuals

for the presence of this SAR(4) process, the null hypothesis

that no fourth-order autocorrelation was present was clearly

rejected. At this point the Durbin-Watson statistic was

insignificant

.
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Figure 5.1 Autocorrelation Function of the Residuals

for Contractor A.

As can be observed, the three calculated estimators of

p^ were relatively close. The data were then transformed and

the model reestimated. This step was performed three times

in order to obtain a reestimated model for each of the esti-

mators of p^. The residuals of the new model were then

analyzed for the presence of autocorrelation. In all three

cases the Durbin-Watson statistic proved to be significant,
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indicating the presence of first-order autocorrelation. The

data were again transformed, this time to eliminate the

AR(1) process (using the calculated estimator of pi), and

the model was reestimated. Examination of the residuals from

this model resulted in the finding that both the

Durbin-Watson and Wallis test statistics were insignificant,

indicating that neither the AR(1) nor SAR(4) processes were

present in the residuals. The autocorrelation function of

these residuals (Figure 5.2) also showed that no autoregres-

sive process was present at any level.
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Figure 5.2 Autocorrelation Function of the Residuals

for Contractor A's model (estimator 3).

The resulting model now had residuals that were free of

autocorrelation. The residuals were then analyzed to deter-

mine if all of the assumptions required for the regression

were satisfied. Note that this does not mean that it has

been concluded that the assumptions are all necessarily
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correct. It merely means that "on the basis of the data we

have seen, we have no reason to say that they are incorrect"

(Draper and Smith, 1981, p. 142).

Three tests were performed to check the normality of the

residuals. An empirical cumulative distribution function

(CDF) was generated to compare the CDF of the residuals with

that of the appropriate distribution. In this case the

appropriate distribution was normal with mean zero and

standard deviation 9099. A probability (Q-Q) plot of the

residuals was also generated which plotted the quantiles of

the residuals against the corresponding quantiles of the

appropriate distribution. Each of these plots (Figure 5.3)

were bounded by the ninety- five percent Kolmogorov-Smirnov

(K-S) confidence boundaries. Both of these plots lie

completely within the K-S boundaries, supporting the assump-

tion that the residuals were distributed normally with mean

zero and standard deviation 9099. To more formally test this

hypothesis a Kolmogorov-Smirnov goodness-of - f it test was

performed with null hypothesis Hq : F(x)=F*(x), versus Hi :

F(x)^F*(x), where F-(x) is the normal distribution with zero

mean and standard deviation 9099 and F(x) is the unknown

distribution function of the data. As presented in Conover

(1980, p. 347) the test statistic for the K-S test is simply

the greatest distance between the cdf, F*(x), and empirical

cdf of the data. It is possible to obtain this test

statistic directly from the normal cdf plot in Figure 5.3.

The test was performed using a significance level of size

a=-05. The K-S test statistic was significant at a level of

.9693. Therefore, the null hypothesis could not be rejected.

Two tests were performed to test the constant variance

(homogeneity of variance) assumption. The residuals were

plotted against the predicted dependent variable (Figure

5.4) to see if any obvious abnormalities could be observed.

The dispersion of the residuals appears to be fairly random
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Figure 5.4 Tests for Homogeneity of Variance of the Residuals

for Contractor A's model (estimator 3).

and the variance relatively constant throughout. An F test

was then performed. The residuals were divided into two sets
p pand the null hypothesis Hq: a^ -<T2 was tested against H-^:

p p p p
^1 ^a2 ' wnere &l anc* CT2 were the variances of the two

sets of residuals. As presented in Mood, et.al.(1974,

p. 438) the test statistic for this F-test is

_ (n2 - !)£(% - X^ 2

(n
x

- l)S(X2i - X
2 )

2 ' (5.1)

where Xi and Xo are the population expected values. This

test statistic has the F distribution with degrees of
p pfreedom n-^-l and n2 -l when (j-^ =a2 • This test was also

performed using a significance level of size a = .05. The

test statistic was significant at a level of .5154.
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Therefore the constant variance assumption could not be

rej ected.

These tests could not reject the assumption that the

residuals were in fact normally distributed random variables

with zero mean and constant variance.

The results for this regression indicated that the

model contained a great deal of information on overhead

costs. The R-squared value was significantly high indicating

that the model contained much more information than just the

mean of the dependent variable. The standard errors of the

regression coefficients, especially that of the slope term,

were now relatively small in comparison to the coefficients.

In summary, after transforming the data numerous times to

eliminate all autocorrelation from the residuals, an EGLS

regression model was obtained that yielded excellent, reli-

able results. This model for the total overhead costs for

contractor A was

TOTOHA = 69090 + 12.18 DIRPERA.

Since all costs were measured in thousands of dollars, the

model may be interpreted as indicating that there is a fixed

cost component of approximately $69,090,000 to overhead

costs (when a function of direct labor personnel) with an

additional $12,180 per direct labor personnel to total over-

head costs (Boger, 1983, pp. 24-25).

The results of the final EGLS models for contractor A

using estimators four and nine are also contained in Table

5. All required assumptions about the residuals in these

models also appeared to be valid. All of the models yielded

excellent results that were very comparable. The slope

terms of all of the models were within eight one-hundredths

,

a spread of approximately three one-hundredths of one stan-

dard deviation. The model for estimator three was slightly

superior however.
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This same general procedure was carried out for all of

the remaining models, but only their final results are

reported. The only difference in the procedure for the

different models was in the order that the various autore-

gressive processes were removed from the residuals. The

normal sequence was to remove the AR processes by order of

significance. To get an initial overview of the type of

autocorrelation that was present in the residuals of the

initial models, the autocorrelation functions of the resi-

duals (Figure 5.5a and 5.5b) were examined. This, combined

with the results of the Durbin-Watson and Wallis tests, gave

the AR process that the data were to be adjusted for first.

The remaining order was then determined from the results of

the Durbin-Watson and Wallis tests performed on the

residuals of the previous model.

The autocorrelation functions showed that only the resi-

duals for contractor A clearly appeared to possess the

pattern expected to be exhibited by residuals containing

Wallis's SAR(4) process. It was also clearly visible that

the models for contractors C and D did not possess this

SAR(4) process at a significant level. As with all of the

contractors they will be examined more thoroughly later in

this chapter. Despite the uncharacteristic appearance of

their autocorrelation functions it appeared that Wallis's

SAR(4) process was also the most significant form of

autocorrelation present in the initial models for the

remaining contractors (B, E, and F).

A number of factors led to this conclusion. First, the

amount of data was very small relative to the amount

required to obtain an accurate portrayal of the autoregres-

sive process from the autocorrelation function. It should be

noted that in the cases of contractors A, B, E and F the

spike for the lagged four residuals was generally most

significant. Secondly, the data were quarterly and as was
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mentioned in chapter three, the plots of their dependent

variables did appear to exhibit the seasonal pattern

decribed by Wallis. Last, as will be shown, the Wallis test

statistic was significant for the residuals from each of

their initial models.

C. THE REMAINING MODELS

1 . Contractor B

Table 6 contains the results for contractor B. The

results of the initial regression of the untransformed data

were fairly good. All of the statistical results, adjusted

R-squared, standard error of regression, F-statistic, and

standard errors of the regression coefficients, supported

this conclusion. But these statistical results could have

been misleading due to the presence of autocorrelation.

Analysis of the residuals showed the Wallis test statistic

to be significant, indicating the presence of the SAR(4),

while the Durbin-Watson test statistic was shown to be

insignificant. The data were then transformed and the model

reestimated for each of the three estimators of p^ . Again

all of the estimators were fairly close. These new models

all provided excellent results. Analysis of the residuals

showed no presence of any AR process, and none of the neces-

sary assumptions pertaining to the residuals were violated

in any of the models. Again the performance of all three

models was very comparable, but the one obtained using

estimator nine was slightly superior. It should be noted

that all three models have negative intercepts. This implies

negative fixed costs for those models. Though implausible,

it is not totally infeasible. The models are being fit to

data that are far from the Y-axis and, as with all models,

these are only valid within the relevant range defined by

the chosen explanatory variable.
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TABLE 6

RESULTS FOR CONTRACTOR B

Model: TOTOHB = a + bDIRPERB

Untransformed Data

Standard Error of the Regression: 9219.
Adjusted R-squared: .7657
F-statistic (degrees of freedom): 69.61 (1,20)
Estimate of a: -144300.

Standard Error: 4450.
Estimate of b: 27. 98,

Standard Error: 3.354
Durbin-Watson Test Statistic: 2.206
Wallis Test Statistic: .75
Estimator Three: .625
Estimator Four: .6385
Estimator Nine: .7256

Transformed Data

Estimator Three

Standard Error of Regression: 7728.
Adjusted R-squared:
F-statistic:
Estimate of a:

Standard Error:
Estimate of b:

Standard Error:

Estimator Four

Standard Error of Regression: 7715.
Adjusted R-squared: .9235
F-statistic: 254.3
Estimate of a: -109000.

Standard Error: 51260.
Estimate of b: 25.32

Standard Error: 3.861

Estimator Nine

Standard Error of Regression: 7651.
Adjusted R-squared:
F-statistic:
Estimate of a:

Standard Error:
Estimate of b:

Standard Error:

9219
248 7

110200
50980

25 41
3 84

9287
274. 5

-100500.
53240

24 68
4 006
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2

.

Contractor C

The results for contractor C are contained in Table

7. Very poor results were obtained for the initial regres-

sion. From the autocorrelation function of the residuals of

this model (Figure 5.5a) it appeared that the AR(1) process

was the most significant form of autocorrelation present.

The Durbin-Watson test statistic supported this finding. It

was significant, indicating the presence of first-order

autocorrelation. As was expected, the Wallis test statistic

was insignificant. The data were then transformed to

eliminate the presence of the AR(1) process, and the model

reestimated. Examination of the residuals of this model

showed no autocorrelation present nor any required assump-

tions violated. The final model had been obtained without

requiring a data transformation for the SAR(4) process. The

results of this model, though inferior to the previous two,

were fairly good.

3

.

Contractor D

Table 8 presents the results for contractor D. Again

fairly poor results were obtained for the initial regres-

sion. From the autocorrelation function of the residuals of

this model (Figure 5.5b) it appeared that no AR process was

present in any significant amount. As expected, the

Durbin-Watson and Wallis test statistics were both insignif-

icant. So the final model, though rather poor, had been

obtained without requiring any data transformations. Further

analysis of the residuals indicated that again all necessary

assumptions appeared to hold. The model for contractor D's

total overhead costs is probably unreliable.

4

.

Contractor E

The results for contractor E are presented in Table

9. Again very poor results were obtained for the initial

model. The sequence of steps for contractor E were the same

as that for contractor A. First, it was necessary for the
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TABLE 7

RESULTS FOR CONTRACTOR C

Model: TOTOHC = a + bDIRPERC

Standard Error of the Regression:
Adjusted R-squared:
F-statistic (degrees of freedom):
Estimate of a:

Standard Error:
Estimate of b:

Standard Error:
Durbin-Watson Test Statistic:
Wallis Test Statistic:
Estimator of p-^

Estimator for

Standard Error of Regression:
Adjusted R-squared:
F-statistic:
Estimate of a:

Standard Error:
Estimate of b:

Standard Error:

Pi

Untransformed Data

11260.
.2123

7.2 (1,22)
158100.
12440.

2.148
.8004
.7814

1.524
.6263

Transformed Data

9120.
.6891

51.97
149700.
21420.

2.699
1.389

data to be transformed to eliminate the presence of the

SAR(4) process, and then the model was reestimated. As

usual, a reestimated model was calculated for each of the

three estimators of p^ . Estimators three and four were again

very close while estimator nine was significantly larger.

Next it was necessary (in all three cases) for the data to

be transformed to eliminate the AR(1) process from the resi-

duals. The EGLS regression of this transformed data proved

to be the final reestimation required. Analysis of these

residuals showed no presence of autocorrelation nor viola-

tion of any required assumptions. All three final models

provided fairly good results and were again very comparable.
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TABLE 8

RESULTS FOR CONTRACTOR D

Model: TOTOHD = a + bDIRPERD

Untrans formed Data

Standard Error of the Regression: 10240.
Adjusted R-squared: .5291
F-statistic (degrees of freedom): 26.84 (1,22)
Estimate of a: 5217.

Standard Error: 18400.
Estimate of b: 14.88

Standard Error: 2.873
Durbin-Watson Test Statistic: 1.450
Wallis Test Statistic: 1.366

The model for estimator nine was again slightly better,

however.

5 . Contractor F

Table 10 presents the results for contractor F. This

time the results for the OLS model were fairly good. But

again, these statistical results could have been misleading

due to the presence of autocorrelation. As with contractor E

the data had to be transformed for the SAR(4) and then the

AR(1) process, and the model reestimated before a final,

"uncorrelated" model was obtained. Examination of these

residuals showed that no type of autocorrelation was present

and that all required assumptions appeared to hold. The

results from all three final models were again very

comparable, and provided very good results. The model for

estimator three was slightly superior, however.

D . SUMMARY

Two things were performed in this chapter. First,

regression models were obtained for each contractor that

allowed for comparison of their total overhead costs.
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.2427
7 .73

7390
8622

6 .549
2 .356
1 .043
.8996
.5502
.5631
.7262

TABLE 9

RESULTS FOR CONTRACTOR E

Model: TOTOHE = a + bDIRPERE

Untransformed Data

Standard Error of the Regression: 3424
Adjusted R-squared:
F-statistic (degrees of freedom): n ^^7.73 (1,20)
Estimate of a:

Standard Error:
Estimate of b:

Standard Error:
Durbin-Watson Test Statistic:
Wallis Test Statistic:
Estimator Three:
Estimator Four:
Estimator Nine:

Transformed Data

Estimator Three

Standard Error of Regression: 2897.
Adjusted R-squared: .7951
F-statistic: 82.49
Estimate of a: 19450.

Standard Error: 12880.
Estimate of b: 8.802

Standard Error: 3.662

Estimator Four

Standard Error of Regression: 2893.
Adjusted R-squared: .7969
F-statistic: 83.39
Estimate of a: 19240.

Standard Error: 12790.
Estimate of b: 8.864

Standard Error: 3.637

Estimator Nine

Standard Error of Regression: 2836.
Adjusted R-squared:
F-statistic:
Estimate of a:

Standard Error:
Estimate of b:

Standard Error:

8022
86 15

18580
11820

9 08
3 358
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TABLE 10

RESULTS FOR CONTRACTOR F

Model: TOTOHF = a + bDIRPERF

Untrans formed Data

Standard Error of the Regression: 17470.
Adjusted R-squared: .6156
F-statistic (degrees of freedom): 37.84 (1,22)
Estimate of a: 219600.

Standard Error: 24470.
Estimate of b: 10 . 14

Standard Error: 1.648
Durbin-Watson Test Statistic: 1.927
Wallis Test Statistic: .4977
Estimator Three: .7512
Estimator Four: .7634
Estimator Nine: .7872

Transformed Data

Estimator Three

Standard Error of Regression: 9660.
Adjusted R-squared: .9664
F-statistic: 663.3
Estimate of a: 229700.

Standard Error: 27490.
Estimate of b: 9. 175

Standard Error: 1.847

Estimator Four

Standard Error of Regression: 9660.
Adjusted R-squared: .9664
F-statistic: 663.3
Estimate of a: 229700.

Standard Error: 27490.
Estimate of b: 9. 175

Standard Error: 1.847

Estimator Nine

Standard Error of Regression: 9641.
Adjusted R-squared: .9638
F-statistic: 613.8
Estimate of a: 227600.

Standard Error: 28250.
Estimate of b: 9.3

Standard Error: 1.885
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Second, since final models were calculated for each of the

three estimators of p^, another means to compare the estima-

tors was obtained.

The analysis indicated that excellent structural

results were obtained for all but one contractor, contractor

D. All of the others yielded reliable, useful regression

models. For comparative purposes the model that provided

the best results for each contractor is presented:

TOTOHA = 69090 + 12.18 DIRPERA

TOTOHB = -100500 + 24.68 DIRPERB

TOTOHC = 149700 + 2.699 DIRPERC

TOTOHD = 5217 + 14.88 DIRPERD

TOTOHE = 18580 + 9.08 DIRPERE

TOTOHF = 229700 + 9.175 DIRPERF.

The model for contractor D was included in the comparison

even though its results were unreliable.

It is possible to use these models to compare the over-

head cost structures of the firms in the sample. The model

for contractor E lies everywhere below the regressions for

contractors A and F. In each case contractor E had both a

significantly lower fixed cost and a lower (not significant)

variable cost than the other contractor. Likewise contractor

C's model was uniformly below that of contractors F. In this

case though, the differences in the fixed and variable costs

were both statistically significant. It should be noted

that the comparisons imply only that, with the same number

of direct personnel, one contractor experiences lower total

overhead costs than another. They do not imply that the

contractor possesses lower total overhead costs regardless

of the circumstances (Boger, 1983, p. 33).

For all relevant contractors the models for the three

estimators were all very comparable. They were so comparable

in fact, that no distinction could be drawn as to which
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estimator was better. The superiority of estimators three

and four over estimator nine in the Monte Carlo simulation

was obviously not significant enough to manifest itself in

this structural analysis.
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VI. CONCLUSIONS

The objectives of this thesis were twofold. The first

objective was to determine the best estimators of autocorre-

lation found in the residuals. The second was to obtain

simple and efficient regression models for overhead costs

for the six aerospace contractors. The first objective was

simply a means of achieving the second since the quality of

the EGLS regression is dependent upon the quality of the

estimator used.

Two methods were utilized to determine the best

estimators of fourth-order autocorrelation, a Monte Carlo

simulation and comparison of the EGLS regression models of

the three preferred estimators (from the simulation). The

results from the Monte Carlo simulation indicated estimators

three and four, the two estimators that utilize the Wallis

test statistic, to be the two best estimators of fourth-

order autocorrelation. Their overall performances were

nearly identical with preference determined by the value of

p^. Estimator three was superior to estimator four for p^
less than or equal to .5, while four was superior for p^
greater than .5. The maximum likelihood estimator, esti-

mator nine, was shown to be the third best estimator.

Another important result from the simulation was that all

nine of the estimators provided an improvement over the OLS

solution when the SAR(4) process was present. Comparison of

the respective EGLS models showed no difference between the

performances of the three estimators. The models were so

comparable that no distinction could be drawn between the

estimators

.

Due to their superior performances in the Monte Carlo

simulation, estimators three and four were chosen as the

best estimators of fourth-order autocorrelation. However,
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it may have appeared from the structural analysis that esti-

mator nine was their equal. The Monte Carlo simulation was

much more sensitive to slight differences in the perform-

ances of the estimators than the regression models. For

this reason the simulation was the main criterion used in

selecting the best estimator. Comparison of the regression

models in the structural analysis would have been more

useful if distinct disparities had arisen between the

performances of the estimator's.

From this analysis no distinct preference could be made

between estimators three and four. Both estimators are

fairly easy to calculate once the Wallis test statistic has

been computed, so difficulty of computation can not be used

to determine a preference between the two. The only

criterion found to discriminate between the two is the

amount of fourth-order autocorrelation present in the resi-

duals (the value of p^) and the "smoothness" of the the

explanatory variables. If the value of p^ (if it can be

speculated) is less than or equal to .5 then estimator three

would be expected to perform better, while estimator four

would be preferred for p^ greater than .5. Though not tested

herein, if the explanatory variables are "smooth" then esti-

mator four would again be expected to outperform estimator

three. Though not as scrupulously investigated in this

thesis, Park and Mitchell's version of the Prais-Winsten

estimator was selected as the estimator of first-order auto-

correlation. It was selected because it was shown to be the

superior two-stage estimator for first-order autocorrelation

in Park and Mitchell's 1980 study.

The structural analysis showed that excellent results

could be obtained for four of the six aerospace contractors.

The results of a fifth model were also more than adequate.

These excellent results were only obtainable after the

effects of autocorrelation were transformed out of the
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dependent and independent variables. As was the case in

Boger's 1984 analysis, the five superior structural models

should provide excellent forecasting results. It can ulti-

mately be concluded that, after eliminating the effects of

autocorrelation though transformation, a simple, efficient

model can be obtained to directly estimate overhead costs

for five of these six aerospace contractors.
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APPENDIX

COMPUTER PROGRAMS

This appendix contains listings of the programs utilized

in the analysis performed herein. All of the functions are

written in APL and contain documentation. The programs

utilized by the Monte Carlo simulation in Chapter 4 were

SIM, RREGRESS, LAGS, DURBIN, CALL1, and TRANS. The following

is a general description of what these programs do and the

sequence of steps followed in the Monte Carlo simulation.

First, the function SIM generates the data required by

the simulation. Next, an OLS regression of the generated

dependent variable, Y
t , on the independent variable, X

t , is

performed. The residuals of this OLS regression are then

sent to the function LAGS which computes the nine estimators

of p^ and the MSE of p^ . Next, the function TRANS transforms

the data using the appropriate estimator. An EGLS regression

is then performed on this transformed data. These last two

steps are actually performed in the function CALL1 which

calls the functions TRANS and RREGRESS in succession. The

function LAGS then takes the results of this EGLS regression

and computes the MSE of 02 and the Adjusted R- squared value.

This cycle is replicated one hundred times for each value of

p^ The function RREGRESS is called to perform all of the

regressions required in the simulation. The functions

DURBIN, PWIT and MAX are called to compute the Durbin, iter-

ative Prais-Winsten, and maximum likelihood estimators of

fourth-order correlation.

The programs utilized in the structural analysis of

Chapter 5 were REGRESS, TRANS, LAG, CHECKER, and VARTEST.

All regressions were performed by REGRESS (Musgrave and

Ramsey, 1981, pp. 254-258). As can be seen from the program
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listing, REGRESS outputs numerous statistical results. The

function TRANS was utilized to transform the data for either

an AR(1) or SAR(4) process. The functions LAG and CHECKER

were called to compute numerous estimators and test statis-

tics (for first and fourth-order autocorrelation) from the

residuals. The F-test utilized in the analysis was performed

using the function VARTEST.

APL FUNCTION SIM

RHOS SIM REP

[I] nTHIS PROGRAM PERFORMS A MONTE CARLO SIMULATION ON

[2] ftTHE NINE ESTIMATORS OF p4. THE INPUT RHOS IS A

[3] qVECTOR OF pU VALUES THAT YOU WANT TO RUN THE

[i+] ^SIMULATION FOR t IN THIS CASE IT IS A VECTOR OF

[5] ^LENGTH TEN OF THE VALUES: .1, .2, .3, .4, .5, .6,

C6] fi.7, .8, .9, AND .95. THE INPUT PARAMETER REP IS

[7] fiTHE NUMBER OF REPLICATIONS OF THE SIMULATION YOU

[8] fiWISH TO RUN, IN THIS CASE 100.

[9] PRINT* 3 9 pO

[10] OUT+1

[II] RMSERHO+AAR+EFF+RANKRHO+RANKAAR+RANKEFF

«-((pfiff0S),9)pO

[12] L2:' PERFORMING TEST FOR RHOn = ' ,*RHOSLOUT]

[13] RHOU+RHOSLOUT1

[14] o CREATION OF NECESSARY VECTORS.

C 1 5 ] MSERn+MSERHS+MSER^L+MSEPn+MSEPHS+MSEPLS+MSED+O

C16] MSEBOLS+MSEBR^+MSEBRnS+MSEBR^L+MSEBPn+MSEBP^S+MSEBPLS

+MSEBD+0

C 1 7 ] AAR20LS+AAR2Rn+AAR2RVS+AAR2RnL+AAR2PU+AAR2P^S+AAR2PLS

+AAR2D+Q

C 1 8 ] MSEPW+MSEPPML+MSEBPW+MSEBPPML+AAR2PW+AAR2PPML+REPPW

+REPMAX+Q

CI 9] PWITFAIL+0

C20] IN+1

C21] ^RANDOM GENERATION OF THE U(T). THEY ARE
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(^DISTRIBUTED NORMALLY WITH MEAN AND VARIANCE

ftACCORDING TO THE CONTRACTOR.

£1:0*32 NORRAND 13454

ftSET ALL E(T) TO U(T)± ( (1- RH0n*2 )* . 5

)

E+U* ( (1- RH0n*2 )*0 . 5

)

J>5

rS£T rffE L4ST T-4 E(T)S TO (/?H04x£(r-4)) + £/(D.

jr:£[J]^(fltf04xE[I-4] )+tf[J]

I«-J + l

+iTx 1 I<3 2

pSET S TO THE APPROPRIATE INTERCEPT AND SLOPE

ftFOR THE CONTRACTOR BEING TESTED.

B<r o 17

XCURRENT+1 ,XCURRENT

ft GENERATE THE INDEPENDENT VARIABLE, Y

YCURRENT+UCURRENT+.xB)+ET<r~2n+E

XCURRENT+ 24 "1 +XCURRENT

rPERFORM THE OLS REGRESSION OF PRESET

^DEPENDENT VARIABLE, X, ON THE GENERATED

^INDEPENDENT VARIABLE, Y.

YCURRENT RREGRESS XCURRENT

MSEBOLS+MSEBOLS+ (

(

BER [2]-S[2])*2)

AAR20LS+AAR20LS+ADJR2

ft CALL THE FUNCTION LAGS WITH THE RESIDUALS FROM

ftTHE OLS REGRESSION AND THE VALUE OF RHOU

.

RHOU- LAGS UH

IN+IN+1

+L1*\IN<REP

ftCOMPUTATION OF MOE'S AND OUTPUT

MSERHO+MSERii ,MSERUS ,MSEPH ,MSEPnS ,MSED ,MSEPLS ,MSERUL ,

MSEPW ,MSEPPML

RMSERHOiOUT;l+(MSERHO*REP)*0.5

AR+AAR2Rn ,AAR2RnS ,AAR2Pn ,AAR2P^S ,AAR2D ,AAR2PLS ,

AAR2RKL ,AAR2PW ,AAR2PPML

[54] AARlOUTil+AR+REP
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[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]



[55] MS+MSEBRV , MSEBRnS , MSEBP^ , MSEBP^S , MSEBD , MSEBPLS ,

MSEBR^L , MSEBPW , MSEBPPML

[56] RMSEBETA+(MS*REP)*0.5

[57] EFFLOUT ;]-«-((MSEBOLS^REP ) * . 5 ) +RMSEBETA

[5 8] PRINTll;l+RMSERHOlOUT;l

[59] P/?JM'[2;]^4Z?[<9yr;]

[60] P/?JM, [3;]^E,FF[0£/2';]

[61] RANKRHO LOUT -,1+kkRMSERHO LOUT ;1

[6 2] i?4MM4F^0tfr;]^^fl[0£/r;]

[63] PAAWFFF[0£/r;]«-/MPFFF[0£/r;]

[64] 'F0F. PP04 = » ,s>PP04

[6 5] 'flMSF RHO .ADJUSTED RSQR AND EFF:'

[66] '12345678 9'

[67] PP/AfT

[68] 'AFC A£e7 P2 F0/? 0LS h ' ,*(AAR20LS*REP)

[69] 'A7C i?FPS FOP PAOT = ' ,*(REPPW*REP)

[70] 'Ptfir FAILED TO CONVERGE = ' ,*PWITFAIL

[71] 'AVC PFPS FOP MAX = • ,<J>(PFPMAX*PFP)

[72] ' •

[7 3] OUT+OUT+1

[74] +L2*\OUT<pRHOS

[75] 'PMSF PP0»

[76] RMSERHO
i t

[78] 'PA/M: RMSERHO'

[79] RANKRHO

[80] MPC PAW# RMSERHO 1

[81] (+-/-RANKRHO)*pRHOS

[82] • '

[83] ADJUSTED P*2'

[84] AAP

[85] • •

[86] 'PAWK ADJUSTED P*2»

[87] RANKAAR

[88] 'AVG PAWK ADJ P*2«
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[89] (,WRANKAAR)*pRHOS

[90] i t

[91] » EFFICIENCY '

[92] EFF

[93] i t

[94] * RANK EFFICIENCY 1

[95] RANKEFF

[96] 'AVG RANK EFF. »

[97] ( +-/-RANKEFF ) t pRHOS

APL FUNCTION LAGS

RHOn LAGS XX

[I] ft USED IN THE MONTE CARLO SIMULATION. IT IS CALLED

[2] ft TO COMPUTE THE NINE ESTIMATORS OF pU AND TO

[3] ftPERFORM THE EGLS REGRESSION AND CALCULATE

[4] ftTHE MOES FOR EACH ESTIMATOR. THE INPUT RHOn IS THE

[5] ftVALUE OF p^ THAT THE SIMULATION IS BEING PERFORMED

[6] rFOR THE INPUT XX IS A VECTOR OF THE RESIDUALS.

[7] J-t-1

[8] J^-pXX

[9] L+J+l

[10] K+J-n

[II] AA+EE+\K

[12] ^DETERMINE THE UNLAGGED AND LAGGED RESIDUALS.

[13] LOOP'.ID+L-I

[14] AA[_I1+XX\_ID~\

[15] EElll+XXtlD-m

[16] I+I+l

[17] +LOOP*\I<K

[18] TU+(pXX)-n

[19] T5+TU- 1

[20] A++/XX*2

[21] A2«-+/( (0,0,0,0, (T5pl),0)/XX)*2
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[22] Z?4«-(*Jl)x +/(((0,0,0,0,r4pl)/XX)- ((rupi), 0,0,0 ,0)/XX)*2

[2 3] ^CALCULATE THE SEVEN ESTIMATORS OF p4

[24] 5u<-(*A)x+/(((o,o,o,o,rupi)/xx)x((ru P i),o,o,o,o)/xx)

[25] fl4SrAi?<-((e7-2)xfl4)*(J-l)

[26] £4ZX*42)x +/(((0,0,0,0,2T4pl)/XX)x((r4pl),0,0,0,0)/XX)

[27] P4-e-l- (0.5x04)

[28] PUSTAR+( ( («7*2 )xP4)+4)*( (J*2 )- 4 )

[29] PLS«-44IFF

[3 0] aCALL THE FUNCTIONS DURBIN , PWIT , 4W£> M4X TO

[31] ^CALCULATE THE DURBIN, ITERATIVE PRAIS-WINSTEN ,

[3 2] R4WP MAXIMUM LIKELIHOOD ESTIMATORS

[3 3] DURBIN

[34] PtfiT

[3 5] -MMxiCPAOTFhO)

[36] PWITFAIL+PWITFAIL+1

[37] ->FFxi (P&OTF^l)

[38] MM

:

REPPW+REPPW+ (WP#- 1

)

[39] FF'.MAX

[40] -*»AAx 1 (MAXFhO)

[41] AA :REPMAX+REPMAX+ (NML- 1

)

[42] ^CALCULATE THE MSE OF p4 FOF F4CB ESTIMATOR

[43] MSFF4«-MSF/?4+((i?4-.ffff04)*2)

[44

]

MSFF4S«-MSFP4S+ ( (RUSTAR- RHO^- ) * 2 )

[45] MSER^L+MSER^L+ ( (RUL- RHOV )*2 )

[46] MSFP4-eMSFP4+((P4-flff04)*2)

[4 7] MSEP^S+MSEP^S+((P^STAR-RHO^ )*2 )

[48] MSEPLS+MSEPLS+((PLS-RHOn )*2

)

[49] MSED+MSED+((PDURBIN-RHO^)*2)

[50] -»MSx 1 (PtfITF=l)

[51] MSEPW+MSEPW+ ( ( Ptf- Ptf 4 ) * 2 )

[52] MS

:

MSEPPML+MSEPPML+ ( (PPML- FP04 ) * 2

)

[53] ^PERFORM THE EGLS REGRESSION AND CALCULATE MSE BETA

[54] q^WD ADJUSTED R- SQUARED FOR EACH OF THE ESTIMATORS

[5 5] C71LL1 P4

[56] MSFSF4<-MSFSF4 + ((BFF[2]-B[2] )*2)
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[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

AAR2RU+AAR2RK+ADJR2

CALL1 R^STAR

MSEBRVS+MSEBRUS+ ( (BER121-

B

[2] )*2)

AAR2RVS+AAR2RnS+ADJR2

CALL! RUL

MSEBRHL+MSEBRnL+((BERt2l-Bi2l )*2)

AAR2RHL+AAR2RnL+ADJR2

CALL1 Pn

MSEBP^MSEBPH+dBERlil-

B

[2] )*2)

AAR2PH+AAR2PU+ADJR2

CALL! PnSTAR

MSEBPUS+MSEBPnS+ ( (BER [2]-B[2])*2)

AAR2PnS+AAR2PUS+ADJR2

CALL! PLS

MSEBPLS+MSEBPLS+ (

(

BER C2]-BC2])*2)

AAR2PLS+AAR2PLS+ADJR2

CALL1 PDURBIN

MSEBD+MSEBD+((BER121-BL21 )*2)

AAR2D+AAR2D+ADJR2

+CC*\ (PWITF=1)

CALL! PW

MSEBPW+MSEBPW+ (

(

BER [2]-B[2])*2)

AAR2PW+AAR2PW+ADJR2

CCCALL1 PPML

MSEBPPML+MSEBPPML

+

(

(

BER [2]-B[2])*2)

AAR2PPML+AAR2PPML+ADJR2

APL FUNCTION TRANS

P TRANS V

[1] ftTHIS FUNCTION TRANSFORMS THE RAN DATA FOR EITHER

[2] ftAN AR(1) OR AN SAR(n) PROCESS. THE INPUT P IS A

[3] ftVECTOR OF LENGTH 2 WHERE PCI] IS THE ESTIMATE OF pi

[4] aAND P[2] IS THE ESTIMATE OF p4. THE INPUT V IS THE
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[5] ^VARIABLE YOU WANT TO BE TRANSFORMED. V CAN BE

[6] ^EITHER A VECTOR OF LENGTH N OR A N*l MATRIX.

[7] DIM+ppV

[8] -*VECT0R*\DIMb1

[9] PRESHAPE V INTO A VECTOR IF IT WAS ENTERED

[10] nAS A N*l MATRIX

[11] CHECK+pV

[12] CHECK 1+CHECK [ 1

]

[13] V+CHECKlpV

[14] VECT0R:P1+Pll]

[15] P2+P12]

[16] +NEXT*iP2>0

[17] aLOOP TO BE PERFORMED FOR THE AR(1) TRANSFORMATION

[18] Jl«-(p7)-l

[19] 71^(0, Jlpl)/7

[20] VPl<-((Ilpl),0)/y

[21] VTl«-y[l]x((l- (Pl*2))*0.5)

[22] 772«-7l- (Plxypi)

[2 3] VV<rVVl t VV2

[24] +ENDx\DIM=l

[2 5] ^RESHAPE THE VARIABLE INTO A N*l MATRIX IF IT

[26] aWAS ENTERED AS SUCH

[27] VV<r(CHECKl,l)pVV

[28] +END

[29] aLOOP TO BE PERFORMED FOR THE AP(4) TRANSFORMATION

[30] NEXT:in+(pV)-n

[31] 71«-(0
f t 0,0,l4pl)/y

[32] 7P4«-((l4pl),0,0,0,0)/7

[3 3] fiCHECK IF THE ESTIMATOR IS < 1.0 AND IF NOT:

[34] +0K*\P2<1

[3 5] o 1) SET THE ESTIMATOR TO .99999

[36] P2<-0. 99999

[37] rS4P(4) TRANSFORMATION COMPUTATION

[38] 0K:7P1234<-4 + 7

[39] 77123U^-7P1234x((l- (P2*2))*0.5)
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[40] 775<-71- (P2*7P4)

[41] 77+771234,775

[42] +END*\DIM=1

[43] ^RESHAPE THE VARIABLE INTO A ffxl MATRIX IF IT

[44] pWS ENTERED AS SUCH

[45] 77<-(CtfECKl,l)p77

[46] £WZ):

4PL FUNCTION DURBIN

DURBIN

[I] oTAIS FUNCTION CALCULATES THE DURBIN ESTIMATOR OF p4

[2] DIMD+pYCURRENT

[3] TUD+DIMD-n

[ 4 ] YDURBIN+ (0,0,0,0, T4£p

1

)/YCURRENT

[5] XZWPBIAM T4£, 4 )p0

[6] XZWPBIW[ ;1]«-1

[7] XDURBINL ; 2] +( (r4£p 1 ) , , , , 0)/YCURRENT

[ 8 ] XCT+DIMD pXCURRENT

[ 9 ] XDURBIN [ ; 3 ] + ( , , , , T4Dp 1 ) /XCZ1

[10] XDURBIN [ ; 4 ] <-" 1 x ( ( (T4Z?p 1 ) , , , , ) /XCr

)

[II] COE+YDURBimXDURBIN

[12] P5«-C0E[2]

4PL FUNCTION PWIT

PWIT

[1] oTtflS FUNCTION COMPUTES THE ITERATIVE PRAIS- WINSTEN

[2] ^ESTIMATOR.

[3] TP+pYCURRENT

[4] TPW+TP-n

[5] CtfE+2

[6] PWITF+NPW+0
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[7] XPW+XCURRENT

[ 8 ] YPW+YCURRENT

[9] XPWT1+XPW1+(TP, Dpi
[10] ITER : UHPW+ ( YCURRENT- ( YHPW+ ( 1

,

XCURRENT ) + . x ( FEPA^YPtf!

(XPtf«- ( XPAT1 , XPA> ) ) ) ) )

DEN++/ ((0,0,0,0, (( ZTAf- 1 ) p 1 ) , ) / £/tfPA> ) * 2

PA>«- ( *DEW ) x + / ( ( ( , 0,0,0, TPWp 1 )/UHPW ) x ( (TPtfp 1 ) , , , , )

/UHPW)

P^0,Ptf

ftTRANSFORM X AND Y

P TRANS XCURRENT

XPW+VV

P TRANS YCURRENT

YPW+VV

ftIF P>1 SET TO .99999

+CONPW*\ (PW<D

PW+0. 99999

C0WPJ/ : XPWT1<-XPW1 x((rP,l)p(4p((l- P#* 2 ) * . 5 ) ) , ( (2T- 4 )

p(l-PAD))

WW-e-tfPtf+1

+DDx\(NPW<52)

PWITF+1

*0

DDlDELTA+CHE-PW

CtfE«-Ptf

ftPERFORM ANOTHER ITERATION IF THE ABSOLUTE

^DIFFERENCE BETWEEN THE LAST TWO ESTIMATIONS

ftIS > .00001.

*ITER*\ ( |DELr^)>0.00001

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

APL FUNCTION MAX

MAX

[1] ftTHIS FUNCTION COMPUTES THE MAXIMUMLIKELIHOOD
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[2] ^ESTIMATOR OF p4 USING THE ALGORITHM DERIVED

[3] aBY BEACH AND MACKINNON.

[4] NPML+pY CURRENT

[5] CH+2

[6] TnML+NPML- 4

[7] XML+XCURRENT

[8] YML+YCURRENT

[9] XMLn«-XMLl«-(WPML,l)pl

CIO] MAXF+NML+0

[11] ^COMPUTE THE RESIDUALS FOR THE REGRESSION OF X ON Y

,

[12] ML : tftf«- ( YCURRENT- ( YtfMZ> ( 1 , XCURRENT ) + . x ( £EMZ>YMLi ( XML

^-(XMLri,XML)))))

[13] 44«-(l, 1,1,1, (T4MLpO ))/£/#.

[14] 4r4«-((r4MLpi),o,o,o,o)/c/#

[15] 42V(0,0,0,0,r4MLpl )/£/#.

[16] L£W0M«-(WPML-l)x((+/UZ,4*2))- (+/U4*2)))

[17] ^COMPUTE THE COEFFICIENTS OF THE POLYNOMIAL

[18] AML+(~lx(NPML- 2)* (+/ (AT*ATU) ) )*DENOM

[19] BML+(( (NPML- 1 )x (+/ (£4*2 ) ) )- ( (NPML* (+/ATU*2 ) ) +

(+/Mr*2)))*D£W0M

[20] CML+(NPMLx(+/AT*ATn))±DENOM

[21] PMLP+BML- ( UML*2 )*3 )

[22] QML+CML+(2*(AML*3 )t27)- (AML*BML*3 )

[23] PffJl^((QMLx(27*0.5))^(2xPMLPx((~lxPMLP)*0.5)))

[2 4] PHI+~2oPHIl

[2 5] p COMPUTE THE ESTIMATOR

[26] PPML«- ("2x(((
_
lxPMLP )*3)*0. 5 )x(2o((PBJt3 ) +o(*3)) ) )-

UML*3)

[27] PPPML+0,PPML

[28] a CALL rtf£ FUNCTION TRANS TO TRANSFORM THE RAW DATA

[2 9] PPPML TP4WS XCURRENT

[3 0] XML+KV

[31] PPPML TPJIWS YCURRENT

[3 2] YML+7V

[33] aJF P>1 RESET TO .99999
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[34] +CONMAXx\(PPML<l)

[35] PPML+O. 99999

[36

]

CONMAX : XMLT1+XML1* ( (NPML , 1 ) p ( 4p ( ( 1- PPML*

2

) * . 5 ) )

,

( (NPML- 4 ) p (
1- PPML) )

)

[3 7] NML+NML+1

[38] +MAFx\(NML<52)

[3 9] MAXF+1

[40] +0

[41] MAF:DELT+CH-PPML

[4 2] CH+PPML

[43] rJF r#£ ABSOLUTE DIFFERENCE BETWEEN THE LAST TWO

[44] ^ESTIMATES IS > .00001 THEN PERFORM ANOTHER

[4 5] ^ITERATION

[46] ^MLxj ( |£>£;Lr)>0.00001

APL FUNCTION CALL1

CALL! EST

[1] r THIS FUNCTION CALLS THE TRANSFORMATION FUNCTION

[2] ftTRANS FOR AN ESTIMATOR OF p4 AND THEN CALLS THE

[3] ftFUNCTION RREGRESS AND PERFORMS AN EGLS REGRESSION

[4] ftON THE TRANSFORMED DATA.

[5] PEST+0,EST

[6] PEST TRANS XCURRENT

[7] XT+VV

[8] PESr 27?4WS YCURRENT

[9] Y2V77

[10] YT RREGRESS XT

APL FUNCTION RREGRESS

Y RREGRESS X;MS;SS

[1] ftTHIS IS A CONDENSED VERSION OF REGRESS LESS
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[2] ftTHE PRINTED OUTPUT TO BE USED IN CONJUCTION WITH

[3] ftTHE SIMULATION SIM.

[4] NP+pX

[5] K+NP121

[6] 55^3pO

[7] MS^((+/Y),MS^+/X)*iVP[l]

C8] SS[2]«-(SS[l]^+/Y*2)-WP[l]xMS[l]*2

C9] UH+(Y- (YH<rX+.x(BER+Y®(X+(l,X)))))

[10] SS131++/UH*2

[11] P2^1-SS[3]*SS[2]

[12] NMINUSK+NPill- (K+l)

[13] ADJR2+R2- ((KtNMINUSK)* (1- R2))

APL FUNCTION REGRESS

Y REGRESS X;MS;D;SS

[I] ftTHIS FUNCTION PERFORMS AN OLS REGRESSION OF X ON Y

.

[2] ftTHE INPUT X IS THE INDEPENDENT VARIABLE AN IS

[3] ftASSUMED TO BE AN N*K MATRIX. THE INPUT Y IS THE

[4] ftDEPENDENT VARIABLE AND IS ASSULMED TO BE A VECTOR

[5] ftOF LENGTH N. A DIAGNOSTIC IS PRINTED IF N<K OR IF

[6] ftRANK X<K. THE CONSTANT TERM IS ADDED BY THE PROGRAM,

[7] ftTHIS FUNCTION WAS OBTAINED FROM RAMSEY AND

[8] ftMUSGRAVE'S PL- ST T (SEE REFERENCES).

[9] FLAG+1

[10] NP+pX

[II] K+NP121

[12] SS^5pO

[13] +PREMENDlx\(NPZll<NPt2]+l)

[14] CM<-(MM+(§X) + .*X)- (MS°.xMS«-+/X)*WP[l]

[15] CRM+D+ . *CM+ . *D+®(

(

(\K) ° .=\K)^CM)*0 .5

[16] MS^((+/Y),A7S)*A/P[1]

[17] SS[2]«-(SS[l]«-+/Y*2)-WP[l]xMS[l]*2

[18] MAIN:UH+(Y- (YH+X+. x (BE+Y®(X+(XC0N1 ,X ) ) ) )

)
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[19] SS[4]^(SS[3]«- +/Ytf*2)-WP[l]xMS[l]*2

[20] SS[5]^+/£/ff*2

[21] RSQ+1-SSL51*SSL21

[22] NMINUSK+NPlll- (K+l)

[23] ADJRSQ+RSQ- ( (K+NMINUSK ) x ( 1- ESQ )

)

[24] 7^/?^SS[5]t(-/^P)-1

[25] STDERR+VARU* .

5

[26] Fl«-SS[4]*SS[5]x#T(-/tfP)-l

[27] F2^SS[3]*SS[5]xU+l)*(-/;VP)-l

[28] COVBE<rVARUx®(§X) + .xX

[29] STDBE+(l l fc}C07SF)*O.5

[3 0] TRATIO+BE+STDBE

[3i] ^cc/vr

[3 2] PREMEND:FLAG+0

[33] COM7
: -»JMJWFWZ)*\FLAG

[34] 'ROUTINE ENDED DUE TO SINGULARITY OF X MATRIX'

[35] -*0

[36] MAINEND:'THE COEFFICIENT ESTIMATES ARE, CONST.

,

XI:'

[37] SF

[3 8] 'THE CORRESPONDING STANDARD ERRORS ARE.'

[3 9] STDBE

[40] TtfF CORRESPONDING T RATIOS ARE:'

[HI] TRATIO

[42] 'tfiTtf DEGREES OF FREEDOM:'

[43] NMINUSK

[44] 'PSQ IS: ,*PSQ

[4 5] 'ADJUSTED RSQ IS: ' ,*ADJRSQ

[46] 'STANDARD ERROR OF REGRESSION IS: ' ,*STDERR

[4 7] 'VAR OF ERROR TERM IS: ' ,*VARU

[48] 'THE F STATISTIC INCLUDING THE CONSTANT TERM IS:'

[49] F2

[50] 'WITH DEGREES OF FREEDOM:'

[51] U+l), (~1+- /NP)

[52] 'THE F STATISTIC NOT INCLUDING CONSTANT TERM IS:'

[53] Fl
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[54] 'WITH DEGREES OF FREEDOM.'

[55] K,Cl+-/NP)

[56] 'THIS ENDS THE OUTPUT FROM REGRESS. 1

[57] +0

[58] PREMENDl'.'NO. OF OBS (N) IS TOO FEW RELATIVE THE '

[59] 'NO. OF REGRESSORS (K) .
'

[60] 'ROUTINE TERMINATED'

APL FUNCTION LAG

LAG XX

[I] qGIVEN the residuals this function CALCULATES THE

[2] nDURBIN-WATSON AND WALLIS TEST STATISTICS, THE

[3] pSINGLE ESTIMATOR OF pi , AND THREE PREFERED

[4] ^ESTIMATORS OF p4 (FROM THE SIMULATION). THE INPUT

[5] p XX IS A VECTOR OF LINGTH N OF THE REGRESSION

[6] ^RESIDUALS.

[7] J^pXX

[8] Tl<rJ- l

[9] T2+J-2

[10] TU+j-n

[II] A++/XX*2

[12] Al«-+/((0,(r2pl),0)/XX)*2

[13] ft CALCULATE THE TWO TEST STATISTICS

[14] z?i«-(*ii)x+/(((o,ripi)/xx)- ((ripi),o)/xx)*2

[15] D4-«-(*A)x + /(((o f 0,0,0, TUpD/XX)- ((rupi),o,o,o,o)/xx)*2

[16] ^CALCULATE THE ESTIMATOR OF pi

[17] pp<-(*Ai)x+/(((o,ripi)/xx)x((npi),o)/xx)

[18] ^CALCULATE THE THREE ESTIMATORS OF p4

[19] ^ESTIMATOR NUMBER THREE IS

[20] P3«-l- (0.5x£H)

[21] ^ESTIMATOR NUMBER FOUR IS

[22] P4«- (((</* 2 )xP3 )+«0*((«7*2)-4)

[23] ^ESTIMATOR NUMBER NINE IS THE MAXIMUM LIKELIHOOD
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[24] ftESTIMATOR

[25] MAX

[26] »D1 h ' ,*D1

[27] 'DEGREES OF FREEDOM = ' ,<*>T1

[2 8] 'PRAIS-WINSTEN 1ST ORDER ESTIMATE ,P1 = « ,3>PP

[29] »Z?4 = ' ,$£4

[3 0] 'DEGREES OF FREEDOM = ',5^

[31] 'DURBIN- WATSON nTH ORDER ESTIMATE, P3 = '
, $P3

[3 2] '£>-tf THEIL-NAGAR MOD. ESTIMATE, P4 s >
, 3>P4

[3 3] TAtf M4X LIKE ESTIMATOR IS, P9 = ' ,*PPML

APL FUNCTION CHECKER

CHECKER RESL

[1] ftTHIS FUNCTION COMPUTES THE DURBIN- WATSON AND

[2] ftWALLIS TEST STATISTICS ON THE RESIDUALS OF A

[3] ^REGRESSION . THE INPUT RESL IS A VECTOR OF LENGTH

[4] ftN OF RESIDUALS.

[5] ftDETERMINE DEGREES OF FREEDOM

[6] TCl+(pRESL)-l

[7] TC^+(pRESL)-U

[8] AC++/RESL*2

[9] ftDETERMINE TEST STATISTICS

[10] 01O(T;iC)x +/(((O,rClpl)/PESL)- ((2'Clpl),0)//?£:SL)*2

[ii] z?4c+(*;ic)x+/(((o,o,o,o,rc4pi)AR£'SL)- ((rc4pi), o,o,o f o)

/PES£)*2

[12] '
'

[13] 'AFTER TRANSFORMATION'

[14] 'Dl = ' ,<$£>1C

[15] 'DEGREES OF FREEDOM = '
, *TC1

[16] 'Dn = ' ,<j>£4C

[17] 'DEGREES OF FREEDOM = ' ,*TCn
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[13

[2]

[3]

[4]

[5]

C6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

APL FUNCTION VARTEST

ALPHA VARTEST S

oTHIS FUNCTION PERFORMS THE F- TEST TO CHECK THE

^HOMOGENEITY OF THE VARIANCE OF THE RESIDUALS.

NO+0. 5x P S

SA+SB+NO p0

DOF+NO- 1

D+2pDOF

ftSERARATE THE RESIDUALS INTO TWO GROUPS.

SA+NO+S

SB+NO^S

ABAR+(+/SA)tNO

BBAR+(+/SB)±NO

^CALCULATE THE VARIANCES OF THE WO GROUPS.

ASOS++/(SA-ABAR)*2

BSOS++/ (SB- BBAR)*2

n CALCULATE THE TEST STATISTIC R AND THE CRITICAL

^REGION.

R+ USOSt BSOS)* USOSLBSOS )

Kl+D FQUAN(ALPHA±2)

K2+D FQUANil- (ALPHA + 2))

oDETERMINE THE LEVEL AT WHICH THE TEST STATISTIC IS

^SIGNIFICANT.

ALPHAC+2*(1- (£> FCENT R))

'FOR AN F TEST WITH ALPHA = ' ,*ALPHA

r DETERMINE IF THE TEST STATISTIC R FALLS WITHIN

p THE CRITICAL REGION.

'REJECT Ho: VAR1 = VAR2'

+NEXT

A: 'ACCEPT Ho: VAR1 = VAR2'

NEXT : ' F STATISTIC = » , <ui?

'OBSERVED LEVEL OF SIGNIF. IS ALPHA = ' ,*ALPHAC
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